Abstract
The authors report the formation of various submicron wrinkle patterns and their transition from one-dimensional (1D) ripples to two-dimensional (2D) herringbone structures on poly(dimethylsiloxane) films. Using mechanical force they can separately control the amount and timing of strain applied to the substrate on both planar directions (either simultaneously or sequentially), which appears to be critical to maneuver the pattern formation in real time. They demonstrate reversible transitions from flat to 1D ripple, to ripple with bifurcation, to ripple/herringbone mixed features, and to well-controlled formation of a highly ordered zigzag-based 2D herringbone structures.