Two distinct steps in pullulanase secretion by Escherichia coli K12

Abstract
Two distinct steps in the secretion of the extracellular, cell-surface-anchored lipoprotein pullulanase by Escherichia coli were uncoupled by allowing export of the enzyme to the cytoplasmic membrane via the signal peptide/sec-gene-dependent general export pathway, and then inducing the pulC-O operon of genes required for translocation to the cell surface. The secretion intermediate cofractionated mainly with intermediate-density vesicles when cells were gently lysed and the resulting vesicles were separated by isopycnic sucrose density centrifugation. Cytoplasmic forms of pullulanase (which are not exported because they lack a functional signal peptide) are more sensitive to heat inactivation, denaturation by sodium dodecyl sulphate and carboxymethylation than the intermediate and cell-surface forms. The latter are distinguished only by the fact that the secretion intermediate is less susceptible to proteinase K and trypsin, and is partially inaccessible to substrate or in an inactive conformation in sphaeroplasts. These and other results indicate that the secretion intermediate can acquire considerable higher-ordered structure, including disulphide bridges, before it is transported to the cell surface; this seems to rule out the possibility that it is threaded through this membrane as a locally unfolded polypeptide.