A multicopy suppressor gene of the Saccharomyces cerevisiae G1 cell cycle mutant gene dbf4 encodes a protein kinase and is identified as CDC5.
Open Access
- 1 July 1993
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 13 (7), 4445-4457
- https://doi.org/10.1128/mcb.13.7.4445
Abstract
We have isolated a multicopy suppressor of the temperature-sensitive growth phenotype of organisms carrying mutations of DBF4, a gene that is required for the initiation of chromosomal DNA replication in Saccharomyces cerevisiae and that interacts with the CDC7 protein kinase. Nucleotide sequence analysis of the suppressor gene, provisionally named MSD2, revealed an open reading frame encoding a protein with a calculated M(r) of 81,024, with amino acid sequence similarity to the catalytic domains of protein kinases. Both genetic linkage and complementation analyses indicated that MSD2 is identical to the cell division cycle gene CDC5. An activity that phosphorylated exogenously added casein was immunoprecipitated by antiserum against a TrpE-Cdc5 fusion protein from lysates of wild-type cells containing CDC5 on a multicopy plasmid but not of cells bearing a small deletion in the predicted protein kinase domain of CDC5 on the plasmid. Deletion of CDC5 was lethal and resulted in a dumbbell-shaped terminal morphology, with the nuclei almost divided but still connected. Consistent with the function at the G2/M boundary, the CDC5 transcript accumulated periodically during the cell cycle, peaking at the G2/M boundary. CDC5 on a multicopy plasmid also suppresses temperature-sensitive cdc15, cdc20, and dbf2 mutations which affect mitosis during the cell cycle.Keywords
This publication has 43 references indexed in Scilit:
- Genetically identified protein kinases in yeast: I: transcription, translation, transport and matingTrends in Genetics, 1991
- The cell-cycle-regulated budding yeast gene DBF2, encoding a putative protein kinase, has a homologue that is not under cell-cycle controlGene, 1991
- Mitotic controlCurrent Opinion in Cell Biology, 1991
- Protein phosphorylation and dephosphorylationCurrent Opinion in Cell Biology, 1990
- New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sitesGene, 1988
- PROTEIN SERINE/THREONINE KINASESAnnual Review of Biochemistry, 1987
- [12] One-step gene disruption in yeastMethods in Enzymology, 1983
- A dependent pathway of gene functions leading to chromosome segregation in Saccharomyces cerevisiae.The Journal of cell biology, 1982
- Sequential function of gene products relative to DNA synthesis in the yeast cell cycleJournal of Molecular Biology, 1976
- Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesisJournal of Molecular Biology, 1974