Dynamic Snap-through for Morphing of Bi-stable Composite Plates

Abstract
Composite laminate plates designed to have two statically stable configurations have been the focus of recent research, with a particular emphasis on morphing applications. In this article, we consider how external vibration energy can be used to assist with the actuation between stable states. This is of interest in the case when surface bonded macro-fiber composites (MFC) actuators are employed as the actuation system. Typically, these type of actuators have been found to require considerably high voltage inputs to achieve significant levels of actuation authority. Therefore, assisting the actuation process will allow lower voltages and/or stiffer plates to be actuated. Two bi-stable plates with different thickness, [04 - 904]T and [02 - 902]T, are tested. The results show a significant reduction in the force required to change state for the case where dynamic excitation provided by an MFC actuator is used to assist the process. This strategy demonstrates the potential of dynamically assisting actuation as a mechanism for morphing of bi-stable composites.

This publication has 13 references indexed in Scilit: