Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces

Abstract
The friction of a clean diamond tip on diamond (111) and (100) surfaces is studied using an ultrahigh vacuum force microscope that simultaneously measures forces parallel and perpendicular to the surface. The 30 nm radius diamond tip is fabricated by chemical vapor deposition. The attractive normal force curve between the tip and surface agrees well with calculated dispersion interactions. The frictional force exhibits periodic features, which on the (100) surface are tentatively associated with a 2×1 reconstructed surface convoluted over an asymmetric tip shape. The (111) surface shows features that cannot be simply related to the surface structure. As the tip is scanned back and forth along a line, the same features are observed in each direction, but offset, suggesting the presence of a conservative force independent of the direction of motion as well as a nonconservative force. The friction is approximately ≂3×10−9 N independent of loads up to 1×10−7 N.