A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.