Deep Currents in the Central Subarctic Pacific Ocean

Abstract
Sections of closely spaced CTD stations along Longs. 165°W, 175°W and 175°E, in combination with 14-month current records from the central longitude, define two deep, nearly zonal currants, with speed increasing upward, in the subarctic Pacific. One flows eastward above the Aleutian Rise and Aleutian Trench, and appears to be a concentration of geostrophic flow forced by the bottom topography. The other flows westward along the Aleutian Island Arc, and is the northern-boundary current predicted by deep-circulation theory. Both currents reach to the sea surface, the boundary current being simply the deep part of the Alaskan Stream. The current records were too few to permit better than rough estimates of volume transports but to the extent that they could be combined with thermal-wind calculations they suggest, at 175°W, (1) a transport of 28 × 106 m3 s−1 for the Alaskan Stream, of whch 5 × 106 m3 s−1 was found below 1500 m, and (2) a transport of around 20 × 1O6 m3 s−1 for the eastward jet, of wh... Abstract Sections of closely spaced CTD stations along Longs. 165°W, 175°W and 175°E, in combination with 14-month current records from the central longitude, define two deep, nearly zonal currants, with speed increasing upward, in the subarctic Pacific. One flows eastward above the Aleutian Rise and Aleutian Trench, and appears to be a concentration of geostrophic flow forced by the bottom topography. The other flows westward along the Aleutian Island Arc, and is the northern-boundary current predicted by deep-circulation theory. Both currents reach to the sea surface, the boundary current being simply the deep part of the Alaskan Stream. The current records were too few to permit better than rough estimates of volume transports but to the extent that they could be combined with thermal-wind calculations they suggest, at 175°W, (1) a transport of 28 × 106 m3 s−1 for the Alaskan Stream, of whch 5 × 106 m3 s−1 was found below 1500 m, and (2) a transport of around 20 × 1O6 m3 s−1 for the eastward jet, of wh...