Abstract
The fructose bisphosphatase (EC 3.1.3.11) activity of type A chloroplasts isolated from young (9-day-old) pea (Pisum sativum var. Progress no. 9) plants, assayed at physiological pH, substrate and Mg2+ concentrations, increased rapidly on illumination. The enzyme activity detected was more than sufficient to account for observed rates of Co2 fixation both during the induction period and during steady-state CO2 fixation, whether or not dihydroxyacetone phosphate had been added to the preparation. Omission of catalase from the suspension medium had no effect. On switching off the light, CO2 fixation by the chloroplasts ceased at once, yet fructose bisphosphatase activity decreased much more slowly. Changes in enzyme activity were much less marked if assays were conducted at 3 mM substrate and 10 mM-Mg2+. Chloroplasts from older (13--20-day-old) peas only fixed CO2 rapidly if catalase was present in the assay medium. The fructose bisphosphatase activity detected under physiological assay conditions was again more than sufficient to account for observed rates of Co2 fixation. In the presence of added dihydroxyacetone phosphate, however, the rate of Co2 fixation appeared to be determined by the rate of light activation of fructose bisphosphatase. In general, the rates of Co2 fixation and enzyme activation, and the final enzyme activity achieved, decreased markedly with increasing age of the plants. The role of light activation of fructose bisphosphatase as a means of controlling the rate of CO2 fixation in pea chloroplasts is discussed.