Abstract
Thermostability of proteins arises from the simultaneous effect of several forces, which in fact lead to decreased flexibility of the polypeptide chain. This is verified by flexibility indices, which are derived from normalized B-values of individual amino acids in several refined three-dimensional structures. Flexibility indices show that overall flexibility is reduced when thermostability is increased. Protein molecules require both flexibility and rigidity to function, but the higher the temperature optimum and stability the more rigid is the structure needed to compensate for increased thermal fluctuations. Flexibilities of proteins performing the same catalytic activity seem to be about the same at their temperature optima, but the more rigid thermostable proteins reach the flexibility of thermolabile proteins at higher temperatures, In several proteins such as allosteric enzymes, some local sites of flexibility are highly conserved. The relevance of reduced flexibility to overall stability of proteins is also discussed. Flexibility indices and profiles can be used in the design of more stable proteins by site-directed mutagenesis.