At the end of the cell cycle a cell physically divides into two daughter cells in a process called cytokinesis. Cytokinesis consists of at least four steps: (1) The position of the presumptive cytokinesis furrow is specified. (2) A contractile ring is formed. (3) The contractile ring contracts, resulting in furrow ingression. (4) Cytokinesis completes with sealing of the membranes. The mitotic spindle positions the cytokinesis furrow at the cell cortex midway along the longitudinal axis of the spindle, which is both the mid-point between the two asters and the location of the spindle midzone. The mitotic spindle emits two consecutive signals that position the furrow: Microtubule asters provide a first signal; the spindle midzone provides a second signal. Our results support the view that the spindle midzone is dispensable for completion of cytokinesis. However, the spindle midzone can negatively affect aster-positioned cytokinesis, possibly because the aster- and midzone-positioned furrows compete for contractile elements.