Regulation of androgen receptor transcriptional activity by rapamycin in prostate cancer cell proliferation and survival
Open Access
- 8 September 2008
- journal article
- research article
- Published by Springer Nature in Oncogene
- Vol. 27 (56), 7106-7117
- https://doi.org/10.1038/onc.2008.318
Abstract
The mTOR (mammalian target of rapamycin) inhibitor rapamycin caused growth arrest in both androgen-dependent and androgen-independent prostate cancer cells; however, long-term treatment induced resistance to the drug. The aim of this study was to investigate methods that can overcome this resistance. Here, we show that rapamycin treatment stimulated androgen receptor (AR) transcriptional activity, whereas suppression of AR activity with the antiandrogen bicalutamide sensitized androgen-dependent, as well as AR-sensitive androgen-independent prostate cancer cells, to growth inhibition by rapamycin. Further, the combination of rapamycin and bicalutamide, but not the individual drugs, induced significant levels of apoptosis in prostate cancer cells. The net effect of rapamycin is determined by its individual effects on the mTOR complexes mTORC1 (mTOR/raptor/GβL) and mTORC2 (mTOR/rictor/sin1/GβL). Inhibition of both mTORC1 and mTORC2 by rapamycin-induced apoptosis, whereas rapamycin-stimulation of AR transcriptional activity resulted from the inhibition of mTORC1, but not mTORC2. The effect of rapamycin on AR transcriptional activity was mediated by the phosphorylation of the serine/threonine kinase Akt, which also partially mediated apoptosis induced by rapamycin and bicalutamide. These results indicate the presence of two parallel cell-survival pathways in prostate cancer cells: a strong Akt-independent, but rapamycin-sensitive pathway downstream of mTORC1, and an AR-dependent pathway downstream of mTORC2 and Akt, that is stimulated by mTORC1 inhibition. Thus, the combination of rapamycin and bicalutamide induce apoptosis in prostate cancer cells by simultaneously inhibiting both pathways and hence would be of therapeutic value in prostate cancer treatment.Keywords
This publication has 30 references indexed in Scilit:
- Expression of mTOR signaling pathway markers in prostate cancer progressionThe Prostate, 2006
- Prolonged Rapamycin Treatment Inhibits mTORC2 Assembly and Akt/PKBMolecular Cell, 2006
- Therapeutic options in androgen‐independent prostate cancer: building on docetaxelBJU International, 2005
- Growing roles for the mTOR pathwayCurrent Opinion in Cell Biology, 2005
- Mammalian target of rapamycin inhibitors activate the AKT kinase in multiple myeloma cells by up-regulating the insulin-like growth factor receptor/insulin receptor substrate-1/phosphatidylinositol 3-kinase cascadeMolecular Cancer Therapeutics, 2005
- Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferationEndocrine-Related Cancer, 2005
- Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR ComplexScience, 2005
- Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitiveNature Cell Biology, 2004
- Development of Two Androgen Receptor Assays Using Adenoviral Transduction of MMTV-Luc Reporter and/or hAR for Endocrine ScreeningToxicological Sciences, 2002
- A mammalian protein targeted by G1-arresting rapamycin–receptor complexNature, 1994