On the Mechanism of Protein‐Synthesis Inhibition by Abrin and Ricin
Open Access
- 1 November 1975
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 59 (2), 573-580
- https://doi.org/10.1111/j.1432-1033.1975.tb02484.x
Abstract
The mechanism of protein synthesis inhibition by the toxic lectins, abrin and ricin, has been studied in crude and in purified cell-free systems from rabbit reticulocytes and Krebs II ascites cells. In crude systems abrin and ricin strongly inhibited protein synthesis from added aminoacyl-tRNA, demonstrating that the toxins act at some point after the charging of tRNA. Supernatant factors and polysomes washed free of elongation factors were treated separately with the toxins and then neutralizing amounts of anti-toxins were added. Recombination experiments between toxin-treated ribosomes and untreated supernatant factors and vice versa showed that the toxin-treated ribosomes had lost most of their ability to support polyphenylalanine synthesis, whereas treatment of the supernatant factors with the toxins did not inhibit polypeptide synthesis. Recombination experiments between toxin-treated isolated 40-S subunits and untreated 60-S subunits and vice versa showed that only when the 60-S subunits had been treated with the toxins was protein synthesis inhibited in the reconstituted system. The incorporation of [3H]puromycin into nascent peptide chains was unaffected by the toxins, indicating that the peptidyl transferase is not inhibited. Both the EF-1-catalyzed and the EF-2-catalyzed ability of the ribosomes to hydrolyze [γ-32P]GTP was inhibited by abrin and ricin. An 8-S complex released from the 60-S subunit by EDTA treatment possessed both GTPase and ATPase activity, while the particle remaining after the EDTA treatment had lost most of its GTPase activity. Both enzyme activities of the 8-S complex were inhibited by abrin and ricin. The present data indicate that there is a common site on the 60-S subunits for EF-1- and EF-2-stimulated GTPase activity and they suggest that abrin and ricin inhibit protein synthesis by modifying this site.Keywords
This publication has 24 references indexed in Scilit:
- Effects of Ricin on the Ribosomal Sites Involved in the Interaction of the Elongation FactorsEuropean Journal of Biochemistry, 1975
- ATPase and GTPase Activities Isolated from Rat Liver RibosomesEuropean Journal of Biochemistry, 1974
- Different biological properties of the two constituent peptide chains of ricin a toxic protein inhibiting protein synthesisBiochemistry, 1973
- Isolation and Properties of Abrin: a Toxic Protein Inhibiting Protein SynthesisEuropean Journal of Biochemistry, 1973
- Treatment of abrin and ricin with β‐mercaptoethanol. Opposite effects on their toxicity in mice and their ability to inhibit protein synthesis in a cell‐free systemFEBS Letters, 1972
- The ribosomal subunit requirements for GTP hydrolysis by reticulocyte polypeptide elongation factors EF-1 and EF-2Biochemical and Biophysical Research Communications, 1972
- Inhibition of Peptide Chain ElongationNature, 1972
- Ricin — a potent inhibitor of protein synthesisFEBS Letters, 1972
- Inhibitors of Ribosome FunctionsAnnual Review of Microbiology, 1971
- Polyribosomes from L cellsExperimental Cell Research, 1969