Abstract
DNA methylation is an epigenetic mark that can be mitotically inherited and is involved in adding stability to the repression of transcription when it is located at the start sites of mammalian genes. Our ability to obtain complete methylomes has transformed our appreciation of the role of DNA methylation in epigenetic processes. DNA methylation in the bodies of genes has long been ignored but might be involved in differential promoter usage and also in transcription elongation and alternative splicing. Repetitive DNA from intragenomic parasites is heavily methylated, which allows transcription of the host gene at the same time as preventing transcription initiation of the repetitive DNA. Methylation of control regions outside of the transcription start sites — such as enhancers and insulators — is increasingly being recognized as being functionally important. Demethylation of DNA is now accepted as being essential for embryonic development and seems to occur mainly in regions of DNA that are not CpG islands; thus, methylation patterns are increasingly being realized as being far more dynamic than previously recognized.