Endothelium-dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats.

Abstract
Endothelium-dependent relaxations are depressed in hypertension. In this study we investigated the possible involvement of endothelium-dependent smooth muscle hyperpolarization in this phenomenon. In isolated aortic segments from control rats, acetylcholine (10(-8)-10(-5) M) elicits relaxations after precontraction with norepinephrine (10(-7) M), and acetylcholine or carbachol (10(-5) M) induce smooth muscle hyperpolarization (10.6 +/- 0.9 mV). Both effects disappear after removal of the endothelium and are depressed by tetraethylammonium (3 x 10(-3) M), a rather nonspecific blocker of K+ channels, but not by glibenclamide (10(-5) M), a potent blocker of the ATP-regulated K+ channels, which has a marked effect on the relaxation induced by BRL 38227. The relaxation effect of acetylcholine is impaired in norepinephrine-contracted preparations from hypertensive rats but is not further depressed by tetraethylammonium. In aorta from hypertensive rats, hyperpolarization induced by carbachol was significantly reduced to a mean of only 21.8% of the values obtained in preparations from normotensive rats. From the relaxation-hyperpolarization relation obtained with BRL 38227 (opening K+ channels), it is derived that the endothelium-dependent hyperpolarization (approximately 10 mV) contributes for at least 20-30% of the maximal relaxation effect of acetylcholine on rat aorta. It is concluded that the diminished endothelium-dependent hyperpolarization may contribute to the depression of the endothelium-dependent relaxation in hypertension.