Abstract
By use of an implicit iteration technique, the finite-element method applied to the heat-conduction problems of solids is no longer restricted to the linear heat-flux boundary conditions, but is extended to include nonlinear radiation–convection boundary conditions. The variation of surface temperatures within each time increment is taken into account; hence a rather large time-step size can be assigned to obtain transient heat-conduction solutions without introducing instability in the surface temperature of a body.