Abstract
Parathyroid hormone (PTH)-stimulated cyclic adenosine monophosphate (cAMP) in rat osteoblastlike (OB) cells has been shown to be modulated by steroid hormones; glucocorticoids are known to increase the level, while the effects of 1,25(OH)2D3 are inhibitory. In the present study, we found that the PTH-stimulated cAMP responses are similar in neonatal mouse and fetal rat OB cells. Dexamethasone (0.13–13nM) augmented PTH-stimulated cAMP in both species. Mouse cells showed a higher maximal response to dexamethasone (100% increment) than rat cells (60–70% increment) with similar sensitivity to dexamethasone (ED50 ∼ 1.0 nm). On the other hand, 1,25(OH)2D3 decreased PTH-stimulated cAMP, but the effect required pharmacological levels of hormone; mouse cells responded at a lower dose (1.3 nM) and were more sensitive than rat cells (responded at 13 nM) to 1,25(OH)2D3 treatment. Introduction of physiological concentrations of 1,25(OH)2D3 (0.013–1.3 nm) in addition to dexamethasone (13 nM) resulted in a synergistic enhancement of PTH-stimulated cAMP in rat cells. In contrast, a dose-dependent antagonistic effect was observed in mouse cells. In summary, our findings demonstrate species and concentration-dependent differences in hormonal responses to 1,25(OH)2D3 and a complex interplay among PTH, dexamethasone, and 1,25(OH)2D3.

This publication has 21 references indexed in Scilit: