Genetic basis of creatine kinase isozymes in skeletal muscle of salmonid fishes

Abstract
The genetic basis of isozyme phenotypes of creatine kinase (CK) from extracts of skeletal muscle of salmonids has been resolved through breeding data including double heterozygous crosses and backcrosses of rainbow trout (Salmo gairdneri), and backcrosses of coho salmon (Oncorhynchus kisutch). The two-, three-, or four-banded phenotypes of homozygous individuals and all heterozygous and hybrid phenotypes of ten salmonid species are readily explained by the following model: (1) there are no detectable heterodimers either between allelic products at a single locus or between loci; (2) each allele is represented electrophoretically by two bands, presumably a reflection of stable posttranslational modification of a single polypeptide unit; (3) CK of salmonid muscle is encoded by two loci—CK-1 and CK-2. The distance separating the paired bands reflecting each allele provides a basis for two groupings—a broad-spaced group (including all species of Oncorhynchus tested excepting O. masou) and a narrow-spaced group (including all species of Salmo tested and O. masou). The relationships among species suggested by the relative mobilities and spacings of these CK bands are consistent with taxonomic schemes inferred from morphological, cytogenetic, and other isozymic data.