Oxidative Stress-Induced Actin Reorganization Mediated by the p38 Mitogen-Activated Protein Kinase/Heat Shock Protein 27 Pathway in Vascular Endothelial Cells

Abstract
Vascular endothelial cells are constantly in contact with oxyradicals and must be especially well equipped to resist their toxic effects and generate appropriate physiological responses. Despite the importance of oxyradicals in the physiopathology of the vascular endothelium, the mechanisms regulating the oxidative response of endothelial cells are poorly understood. In the present study, we observed that H sub 2 O2 in concentrations that induced severe fragmentation of F-actin in fibroblasts rather induced a reorganization of F-actin in primary cultures of human umbilical vein endothelial cells (HUVECs) that was characterized by the accumulation of stress fibers, the recruitment of vinculin to focal adhesions, and the loss of membrane ruffles. H2 O2 also induced in these cells a strong (10- to 14-fold) activation of the p38 mitogen-activated protein (MAP) kinase, which resulted in activation of MAP kinase-activated protein kinase-2/3 and phosphorylation of the F-actin polymerization modulator, heat shock protein 27 (HSP27). The MAP kinases extracellular-regulated kinase, and c-Jun N-terminal kinase/stress-activated protein kinase were only slightly increased by these treatments. Inhibiting p38 activity with the highly specific inhibitor SB203580 blocked the H2 O2-induced endothelial microfilament responses. Moreover, fibroblasts acquired an endothelium-like SB203580-sensitive actin response when HSP27 concentration was increased by gene transfection to the same high level as found in HUVECs. The results indicate that activation of p38 MAP kinase in cells such as endothelial cells, which naturally express high level of HSP27, plays a central role in modulating microfilament responses to oxidative stress. Consequently, the p38 MAP kinase pathway may participate in the several oxyradical-activated functions of the endothelium that are associated with reorganization of microfilament network.