Structure of the FBJ murine osteosarcoma virus genome: molecular cloning of its associated helper virus and the cellular homolog of the v-fos gene from mouse and human cells.

Abstract
The 8.2-kilobase (kb) unintegrated circular DNA form of the FBJ murine leukemia virus (FBJ-MLV) was linearized by cleavage at the single HindIII site, molecularly cloned into bacteriophage Charon 30, and subsequently subcloned into pBR322 (pFBJ-MLV-1). Both FBJ-MLV virion RNA and pFBJ-MLV-1 DNA were used to investigate the arrangement of helper virus sequences in the FBJ murine osteosarcoma virus genome (FBJ-MSV) by heteroduplex formation with cloned FBJ-MSV proviral DNA. The results showed that the FBJ-MSV genome contained 0.8 kb of helper virus sequence at its 5' terminus and 0.98 kb at its 3' terminus. Approximately 6.8 kb of helper virus sequence had been deleted, and 1.7 kb of unrelated sequence was inserted into the FBJ-MSV genome. This substituted region contains v-fos, the transforming gene of FBJ-MSV. Using a probe specific for v-fos, we have cloned homologous sequences (c-fos) from mouse and human chromosomal DNA. Heteroduplex analysis of FBJ-MSV DNA with these recombinant clones showed that both the c-fos(mouse) and the c-fos(human) sequences hybridized to the entire 1.7-kb v-fos region. However, five regions of homology of 0.27, 0.26, 0.14, 0.5, and 0.5 kb were separated by four regions of nonhomology of 0.76, 0.55, 0.1, and 0.1 kb from 5' to 3' with respect to the FBJ-MSV genome. The size of these sequences showed striking similarity in both c-fos(mouse) and c-fos(human).