Assessing the Potential for Energy Regeneration in Dynamic Subsystems

Abstract
The utility of many controlled dynamic systems is impaired by excessive power consumption and related hardware. In this paper, the potential for energy regeneration in a broad class of dynamic subsystems is considered. In doing so, we consider the potential for a dynamic subsystem to be self-contained and self-sustaining. The development begins with a definition for subsystem passivity and new definitions for subsystem regenerativity and activity. While diagnosis of a passive subsystem can be made simply through observation of the isolated subsystem, it is shown that the diagnosis of a subsystem as either regenerative or active, in general, requires the computation of the subsystem’s average power absorption. Consequently, the accuracy of such a diagnosis depends upon the level of knowledge regarding the overall system and its inputs. Simple mass suspension examples are provided to demonstrate the developed theory.

This publication has 4 references indexed in Scilit: