Effects of UV-B radiation on near-surface zooplankton of puget sound

Abstract
An increase in incident solar ultraviolet irradiation, resulting from possible deterioration of the stratospheric ozone layer, would have important biological effects. Though the oceans are relatively opaque to UV radiation, compared to visible light, increases in incident UV may affect organisms living within the first few meters of the sea surface. Shrimp larvae, crab larvae, and euphausids were exposed to various low levels of simulated solar UV radiation (UV-B, 290–315 nm) under laboratory conditions. Comparisons between solar and artificial spectra were based on spectroradiometric measurements converted to erythemally effective irradiance. These zooplankton tolerated UV-B irradiance levels up to threshold levels with no significant reduction in survival or developmental rates compared to control organisms. Beyond the threshold levels, activity, development, and survival rapidly declined. The apparent UV thresholds are near present incident UV levels. Observed survival threshold levels for each experimental group were superimposed on seasonal solar incident UV levels at the experimental site. These threshold levels appeared to be exceeded by median ambient UV levels late in the season of surface occurrence of each species. UV increases resulting from ozone depletion may significantly shorten this season. Although the apparent impact would be lessened by the decrease in UV with depth, irreversible detrimental effects would probably occur before reported survival thresholds were exceeded.