The c-Myc-interacting adaptor protein Bin1 activates a caspase-independent cell death program
- 28 September 2000
- journal article
- research article
- Published by Springer Nature in Oncogene
- Vol. 19 (41), 4669-4684
- https://doi.org/10.1038/sj.onc.1203681
Abstract
Cell death processes are progressively inactivated during malignant development, in part by loss of tumor suppressors that can promote cell death. The Bin1 gene encodes a nucleocytosolic adaptor protein with tumor suppressor properties, initially identified through its ability to interact with and inhibit malignant transformation by c-Myc and other oncogenes. Bin1 is frequently missing or functionally inactivated in breast and prostate cancers and in melanoma. In this study, we show that Bin1 engages a caspase-independent cell death process similar to type II apoptosis, characterized by cell shrinkage, substratum detachment, vacuolated cytoplasm, and DNA degradation. Cell death induction was relieved by mutation of the BAR domain, a putative effector domain, or by a missplicing event that occurs in melanoma and inactivates suppressor activity. Cells in all phases of the cell cycle were susceptible to death and p53 and Rb were dispensable. Notably, Bin1 did not activate caspases and the broad spectrum caspase inhibitor ZVAD.fmk did not block cell death. Consistent with the lack of caspase involvement, dying cells lacked nucleosomal DNA cleavage and nuclear lamina degradation. Moreover, neither Bcl-2 or dominant inhibition of the Fas pathway had any effect. In previous work, we showed that Bin1 could not suppress cell transformation by SV40 large T antigen. Consistent with this finding, we observed that T antigen suppressed the death program engaged by Bin1. This observation was interesting in light of emerging evidence that T antigen has roles in cell immortalization and human cell transformation beyond Rb and p53 inactivation. In support of a link to c-Myc-induced death processes, AEBSF, a serine protease inhibitor that inhibits apoptosis by c-Myc, potently suppressed DNA degradation by Bin1. Our findings suggest that the tumor suppressor activity of Bin1 reflects engagement of a unique cell death program. We propose that loss of Bin1 may promote malignancy by blunting death penalties associated with oncogene activation.Keywords
This publication has 83 references indexed in Scilit:
- Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanismsOncogene, 1999
- Identification of novel interaction partners for the conserved membrane proximal region of α‐integrin cytoplasmic domainsFEBS Letters, 1999
- Resistance to Fas-mediated apoptosis: activation of Caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILPOncogene, 1998
- Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell deathCell Death & Differentiation, 1998
- BCL-2 FAMILY: Regulators of Cell DeathAnnual Review of Immunology, 1998
- Involvement of CPP32/Caspase-3 in c-Myc-induced apoptosisOncogene, 1998
- C-MYC–induced Apoptosis in Polycystic Kidney Disease Is Bcl-2 and p53 IndependentThe Journal of Experimental Medicine, 1997
- Amphiphysin II (SH3P9; BIN1), a Member of the Amphiphysin/Rvs Family, Is Concentrated in the Cortical Cytomatrix of Axon Initial Segments and Nodes of Ranvier in Brain and around T Tubules in Skeletal MuscleThe Journal of cell biology, 1997
- Programmed cell death: Apoptosis and oncogenesisCell, 1991
- Selective extraction of polyoma DNA from infected mouse cell culturesJournal of Molecular Biology, 1967