Dynamic light scattering measurements were performed on spectrin from human erythrocytes in 25 mM Tris buffer at pH 7.6 with 100 mM NaCl and 5 mM EDTA. Measurements were made on spectrin solutions prepared as dimers and tetramers over the temperature range from 23 to 41 degrees C, as a function of the square of the scattering vector (K2) over the range of 0.7 x 10(10) cm-2 less than or equal to K1 less than or equal to 20 x 10(10) cm-2. Analysis of the autocorrelation functions collected for these solutions revealed the presence of two predominant motional components over the entire range of K2. Plots of the diffusion coefficients (D20) of these components, with viscosity and temperature corrected to water at 20 degrees C, as a function of K2 indicated three rather distinct regions, flat regions at low and high K2 joined by a sloping intermediate region. At small K2 (less than or equal to 4 x 10(10) cm-2) the D20 values were (7.3 +/- 2.0) x 10(-8) cm2/s for the slow component and (20.3 +/- 2.0) x 10(-8) cm2/s for the fast component. At large K2 (greater than or equal to 10 x 10(10) cm-2) the values increased to (13.0 +/- 2.0) x 10(-8) cm2/s for the slow component and (39.4 +/- 2.0) x 10(-8) cm2/s for the fast component. In the intermediate K2 region, D20 is a linear function of K2 and appears as a transition between the low and high K2 regions.(ABSTRACT TRUNCATED AT 250 WORDS)