Grating resonances in air–silica microstructured optical fibers
- 1 November 1999
- journal article
- Published by Optica Publishing Group in Optics Letters
- Vol. 24 (21), 1460-1462
- https://doi.org/10.1364/ol.24.001460
Abstract
We report what is believed to be the first demonstration of optical fiber gratings written in photonic crystal fibers. The fiber consists of a germanium-doped photosensitive core surrounded by a hexagonal periodic air-hole lattice in a silica matrix. The spectra of these gratings allow for a detailed characterization of the fiber. In particular, the gratings facilitate coupling to higher-order leaky modes. We show that the spatial distribution and the effective index of these modes are determined largely by the design of the lattice and that the grating spectra are unaffected by the refractive index surrounding the fiber. We describe these measurements and corresponding simulations and discuss their implications for the understanding of such air-hole structures.Keywords
This publication has 6 references indexed in Scilit:
- Holey optical fibers: an efficient modal modelJournal of Lightwave Technology, 1999
- Leaky cladding mode propagation in long-period fiber grating devicesIEEE Photonics Technology Letters, 1999
- Properties of photonic crystal fiber and the effective index modelJournal of the Optical Society of America A, 1998
- Fiber grating spectraJournal of Lightwave Technology, 1997
- Endlessly single-mode photonic crystal fiberOptics Letters, 1997
- Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam methodApplied Optics, 1980