Hydrologic Data Assimilation with the Ensemble Kalman Filter

Abstract
Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land surface model. An optimal smoother (a dynamic variational method) is used as a benchmark for evaluating the filter's performance. In a series of synthetic experiments the effect of ensemble size and non-Gaussian forecast errors on the estimation accuracy of the EnKF is investigated. With a state vector dimension of 4608 and a relatively small ensemble size of 30 (or 100; or 500), the actual errors in surface soil moisture at the final update time are reduced by 55% (or 70%; or 80%) from the value obtained without assimilation (as compared to 84% for the optimal smoother). For robust error variance estimates, an ensemble of at least 500 members is needed. The dynamic evolution o... Abstract Soil moisture controls the partitioning of moisture and energy fluxes at the land surface and is a key variable in weather and climate prediction. The performance of the ensemble Kalman filter (EnKF) for soil moisture estimation is assessed by assimilating L-band (1.4 GHz) microwave radiobrightness observations into a land surface model. An optimal smoother (a dynamic variational method) is used as a benchmark for evaluating the filter's performance. In a series of synthetic experiments the effect of ensemble size and non-Gaussian forecast errors on the estimation accuracy of the EnKF is investigated. With a state vector dimension of 4608 and a relatively small ensemble size of 30 (or 100; or 500), the actual errors in surface soil moisture at the final update time are reduced by 55% (or 70%; or 80%) from the value obtained without assimilation (as compared to 84% for the optimal smoother). For robust error variance estimates, an ensemble of at least 500 members is needed. The dynamic evolution o...