Nickel speciation of residual oil fly ash and ambient particulate matter using X-ray absorption spectroscopy.

Abstract
The chemical speciation of Ni in fly ash produced from ~0.85 wt % S residual (no. 6 fuel) oils in laboratory (7 kW)- and utility (400 MW)-scale combustion systems was investigated using X-ray absorption fine structure (XAFS) spectroscopy, X-ray diffraction (XRD), and acetate extraction [1 M NaOAc-0.5 M HOAc (pH 5) at 25 °C]-anodic stripping voltammetry (ASV). XAFS was also used to determine the Ni speciation of ambient particulate matter (PM) sampled near the 400-MW system. Based on XAFS analyses of bulk fly ash and their corresponding acetate extraction residue, it is estimated that >99% of the total Ni (0.38 wt %) in the experimentally produced fly ash occurs as NiSO4-xH2O, whereas >95% of the total Ni (1.70 and 2.25 wt %) in two fly ash samples from the 400-MW system occurs as NiSO4-xH2O and Ni-bearing spinel, possibly NiFe2O4. Spinel was also detected using XRD. Acetate extracts most of the NiSO4-xH2O and concentrates insoluble NiFe2O4 in extraction residue. Similar to fly ash, ambient PM contains NiSO4-xH2O and NiFe2O4; however, the proportion of NiSO4-xH2O relative to NiFe2O4 is much greater in the PM. Results from this and previous investigations indicate that residual oil ash produced in the 7-kW combustion system lack insoluble Ni (e.g., NiFe2O4) but are enriched in soluble NiSO4-xH2O relative to fly ash from utility-scale systems. This difference in Ni speciation is most likely related to the lack of additive [e.g., Mg(OH)2] injection and residence time in the 7-kW combustion system.

This publication has 1 reference indexed in Scilit: