Localized expression of an anti-TNF single-chain antibody prevents development of collagen-induced arthritis

Abstract
Although systemic administration of neutralizing anti-TNF antibodies has been used successfully in treating rheumatoid arthritis, there is a potential for side effects. We transduced a collagen reactive T-cell hybridoma with tissue-specific homing properties to assess therapeutic effects of local delivery to inflamed joints of anti-TNF single-chain antibodies (scFv) by adoptive cellular gene therapy. Cell culture medium conditioned with 1 × 106 scFv producer cells/ml had TNF neutralizing capacity in vitro equivalent to 50 ng/ml anti-TNF monoclonal antibody. Adding a kappa chain constant domain to the basic scFv (construct TN3-Cκ) gave increased in vitro stability and in vivo therapeutic effect. TN3-Cκ blocked development of collagen-induced arthritis in DBA/1LacJ mice for >60 days. Transgene expression was detected in the paws but not the spleen of treated animals for up to 55 days postinjection. No significant variations in cell proliferation or cytokine secretion were found in splenocytes or peripheral lymphocytes. IL-6 expression was blocked in the diseased paws of mice in the scFv treatment groups compared to controls. In conclusion, we have shown that local expression of an anti-inflammatory agent blocks disease development without causing demonstrable systemic immune function changes. This is encouraging for the potential development of safe adoptive cellular therapies to treat autoimmunity.