Pax genes and organogenesis

Abstract
Pax genes are a family of developmental control genes that encode nuclear transcription factors. They are characterized by the presence of the paired domain, a conserved amino acid motif with DNA-binding activity. Originally, paired-box-containing genes were detected in Drosophila melanogaster, where they exert multiple functions during embryogenesis. In vertebrates, Pax genes are also involved in embryogenesis. Mutations in four out of nine characterized Pax genes have been associated with either congenital human diseases such as Waardenburg syndrome (PAX3), Aniridia (PAX6), Peter's anomaly (PAX6), renal coloboma syndrome (PAX2) or spontaneous mouse mutants (undulated (Pax1), Splotch (Pax3), Small eye (Pax6), Pax2(1)Neu), which all show defects in development. Recently, analysis of spontaneous and transgenic mouse mutants has revealed that vertebrate pax genes are key regulators during organogenesis of kidney, eye, ear, nose, limb muscles, vertebral column and brain. Like their Drosophila counterparts, vertebrate Pax genes are involved in pattern formation during embryogenesis, possibly by determining the time and place of organ initiation or morphogenesis. For most tissues, however, the nature of the primary developmental action of Pax transcription factors remains to be elucidated. One predominant theme is signal transduction during tissue interactions, which may lead to a position-specific regulation of cell proliferation.