Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators.

Abstract
The present study was designed to test the effect of bacterial endotoxin on penetration of viruses into the central nervous system (CNS). As a model we used two neurovirulent viruses that lack neuroinvasive capacity: West Nile virus-25 (WN-25) and neuroadapted Sindbis virus (SVN). Administration of lipopolysaccharide (LPS, 100 micrograms/mouse) to CD-1 mice, followed by WN-25 inoculation resulted in 83% encephalitis and death, compared with less than 5% in controls. The results in SVN-inoculated CD-1 mice were quite similar. LPS-treated mice suffered 62% mortality compared with 6% in the nontreated group. No changes in viral neuroinvasiveness were demonstrated in viruses isolated from brains of encephalitic mice, suggesting that neuroinvasion is not due to a selection process for an invasive variant, but to direct penetration of the viruses through the blood-brain barrier (BBB). LPS did not induce WN-25 encephalitis in LPS-insensitive C3H/HeJ mice, compared with 100% neuroinvasion in C3H/HeB mice. Induction of neuroinvasion could be transferred to C3H/HeJ mice by transfusion with serum obtained from LPS-treated, LPS-responsive mice. Passive immunization of CD-1 mice with anti-mTNF antibodies before LPS administration did not prevent LPS-induced WN-25 encephalitis. Furthermore, neutralization of tumor necrosis factor activity in the serum of LPS-treated mice did not abolish its activity, and transfusion-associated encephalitis was observed after the administration of the neutralized serum with WN-25. We suggest that LPS can contribute to virus penetration from the blood into the CNS, a process which turns a mild viral infection into a severe lethal encephalitis. This effect is mediated by soluble factors, and is probably achieved by injury to cerebral microvascular endothelium and modulation of BBB permeability.