Compensation of corneal aberrations by the internal optics in the human eye

Top Cited Papers
Open Access
Abstract
The objective was to study the relative contribution of the optical aberrations of the cornea and the internal ocular optics (with the crystalline lens as the main component) to overall aberrations in the human eye. Three sets of wave-front aberration data were independently measured in the eyes of young subjects: for the anterior surface of the cornea, the complete eye, and internal ocular optics. The amount of aberration of both the cornea and internal optics was found to be larger than for the complete eye, indicating that the first surface of the cornea and internal optics partially compensate for each other’s aberrations and produce an improved retinal image. This result has a number of practical implications. For example, it shows the limitation of corneal topography as a guide for new refractive procedures and provides a strong endorsement of the value of ocular wave-front sensing for those applications.