The first biopolymer-wrapped non-carbon nanotubes

Abstract
DNA-wrapped halloysite nanotubes were obtained by a mechanochemical reaction in the solid state. The characterization by scanning electron microscopy showed that the nanotubes were cut into shorter lengths and were completely covered with DNA. This resulted in a high aqueous solubility of the product with stability of the solution for about 6 weeks. The nanotubes were cut to different fractions with lengths of 200-400 nm (30-40%), 400-600 nm (10-20%) and 600-800 nm (5-10%) after ball milling. FTIR spectroscopic analysis shows that the DNA in the product remained intact. This straightforward technique for obtaining water-soluble halloysite nanotubes by a solid-state reaction has great potential for biomedical applications of nanotubes.