The breakdown of the individual neurofilament proteins by cathepsin D

Abstract
In a continuing study of proteolysis of CNS proteins by CNS enzymes, neurofilament proteins (210 K, 155 K, 70 K) and desmin were separated, and the breakdown of individual proteins by purified brain cathepsin D was measured and compared to breakdown by plasma thrombin. With both cathepsin D and thrombin, the rate of breakdown of the 70 K protein was the highest, followed by the 155 K, and that of the 210 K was the lowest. With each substrate cathepsin D breakdown was the highest at pH 3; small but significant breakdown could be seen at pH 6. The pattern of intermediate breakdown products depended on pH, with greater amounts of fragments detected at higher pH, and the patterns with the two enzymes were different. We showed that differences exist in cleavage sites and breakdown rates of the neurofilament proteins. The capacity of the cathepsin D present in the tissue to hydrolyze these substrates was high, even at pH close to neutral, and was greatly in excess of that needed for physiological neurofilament turnover.