Peptidergic modulation of neuronal circuitry controlling feeding in Aplysia
Open Access
- 1 March 1987
- journal article
- research article
- Published by Society for Neuroscience in Journal of Neuroscience
- Vol. 7 (3), 671-681
- https://doi.org/10.1523/jneurosci.07-03-00671.1987
Abstract
We examined the effects of 3 neuropeptides and the bioactive amine 5-HT on identified motoneurons (B15 and B16) and interneurons (B4, B5) involved in the control of feeding behavior in Aplysia californica. The application of egg-laying hormone (ELH), small cardioactive peptide b (SCPb), and 5-HT elicits distinct patterns of synaptically induced bursting in the neurons, while PheMetArgPheamide (FMRFamide) inhibits firing due to synaptic activity. Repetitive IPSPs recorded in B15 and B16 are induced by 5-HT and SCPb and inhibited by FMRFamide. The substances also may act directly: In solutions that block synaptic transmission SCPb excites B15, ELH excites B16, 5-HT excites B15, B16, and B4, and FMRFamide both inhibits B15 and B16 and excites B4. We suggest that the output of a buccal ganglion central pattern generator may be modulated to produce distinct patterns of motoneuron activity by these candidate transmitters. We also noted differences in the intrinsic properties of the 2 motoneurons. B15 contains SCPb immunoreactivity while B16 does not. This finding suggests that B15 may be the source for the SCPb immunoreactivity previously found at the ARC muscle and that SCPb may be acting in an autocrine mode. Also, B15 has a significantly lower resting potential than B16 and contains a large transient outward (Ia-like) current. The candidate transmitters act by exciting or inhibiting elements at every level within the hierarchically organized motor system that controls feeding. This expands the diversity of behavioral repertoires that may be elicited from a particular neural circuit.This publication has 28 references indexed in Scilit:
- Neural Basis of Rhythmic Behavior in AnimalsScience, 1980
- Neuronal sites of action of a neurosecretory peptide, egg-laying hormone, in Aplysia californicaJournal of Neurophysiology, 1980
- Purification and primary structure of the neuropeptide egg-laying hormone of Aplysia californicaProceedings of the National Academy of Sciences, 1979
- Biophysical mechanisms contributing to inking behavior in AplysiaJournal of Neurophysiology, 1979
- Neuronal Generation of the Leech Swimming MovementScience, 1978
- Motor control of buccal muscles in AplysiaJournal of Neurophysiology, 1978
- Modulatory control of buccal musculature by a serotonergic neuron (metacerebral cell) in AplysiaJournal of Neurophysiology, 1978
- Interconnections of identified multiaction interneurons in buccal ganglia of AplysiaJournal of Neurophysiology, 1977
- Three pharmacologically distinct potassium channels in molluscan neurones.The Journal of Physiology, 1977
- Egg-laying behavior in Aplysia californicaBehavioral Biology, 1977