On the stability of two-dimensional stagnation flow

Abstract
The paper examines the stability of the uniform flow which approaches a two-dimensional stagnation region formed when a cylinder or a two-dimensional blunt body of finite curvature is immersed in a crossflow. It is shown that such a flow is unstable with respect to three-dimensional disturbances. This conclusion is reached on the basis of a mathematical analysis of a simplified form of the disturbance equation for the stream-wise component of the vorticity vector. The ultimate, or stable, flow pattern is governed by a singular Sturm–Liouville problem whose solution possesses a single eigenvalue. The resulting flow is one in which a regularly distributed system of counter-rotating vortices is super-imposed on the basic, Hiemenz-like pattern of streamlines. The spacing of the vortices is a unique function of the characteristics of the flow, and a theoretical estimate for it agrees well with experimental results. The analysis is extended heuristically to include the effect of free-stream turbulence on the spacing.The problem is similar to the classical Görtler–Hämmerlin study of the stability of stagnation flow against an infinite flat plate, which revealed the existence of a spectrum of eigenvalues for the disturbance equation. The present analysis yields the same result when an infinite radius of curvature is assumed for the blunt body.