Recently one of the authors proposed a reconstruction algorithm, which is theoretically exact and has the truly shift-invariant filtering and backprojection structure. Each voxel is reconstructed using the theoretically minimum section of the spiral, which is located between the endpoints of the PI segment of the voxel. Filtering is one-dimensional, performed along lines with variable tilt on the detector, and consists of five terms. We will present evaluation of the performance of the algorithm. We will also discuss and illustrate empirically the contributions of the five filtering terms to the overall image. A thorough evaluation proved the validity of the algorithm. Excellent image results were achieved even for high pitch values. Overall image quality can be regarded as at least equivalent to the less efficient, exact, Radon-based methods. However, the new algorithm significantly increases efficiency. Thus, the method has the potential to be applied in clinical scanners of the future. The empirical analysis leads to a simple, intuitive understanding of the otherwise obscure terms of the algorithm. Identification and skipping of the practically irrelevant fifth term allows significant speed-up of the algorithm due to uniform distance weighting.