The cole-moore effect in nodal membrane of the frogRana ridibunda: Evidence for fast and slow potassium channels

Abstract
The K conductance (g K) kinetics were studied in voltage-clamped frog nodes (Rana ridibunda) in double-pulse experiments. The Cole-Moore translation forg Kt curves associated with different initial potentials (E) was only observed with a small percentage of fibers. The absence of the translation was found to be caused by the involvement of an additional, slow,g K component. This component cannot be attributed to a multiple-state performance of the K channel. It can only be accounted for by a separate, slow K channel, the fast channel being the same as then 4 K channel inR. pipiens. The slow K channel is characterized by weaker sensitivity to TEA, smaller density, weaker potential (E) dependence, and somewhat more negativeE range of activation than the fast K channel. According to characteristics of the slow K system, three types of fibers were found. In Type I fibers (most numerous) the slow K channel behaves as ann 4 HH channel. In Type II fibers (the second largest group found) the slow K channel obeys the HH kinetics within a certainE range only; beyond this range the exponential decline of the slowg K component is preceded by anE-dependent delay, its kinetics after the delay being the same as those in Type I fibers. In Type III fibers (rare) the slow K channel is lacking, and it is only in these fibers that the Cole-Moore translation of the measuredg Kt curves can be observed directly. The physiological role of the fast and slow K channel in amphibian nerves is briefly discussed.