Bifunctional Role of Protein Tyrosine Kinases in Late Preconditioning Against Myocardial Stunning in Conscious Rabbits

Abstract
—Although protein tyrosine kinases (PTKs) have been implicated in late preconditioning (PC) against infarction, their role in late PC against stunning is unknown. Furthermore, it is unknown whether PTK signaling is necessary only to trigger late PC on day 1 or also to mediate it on day 2. Thus, conscious rabbits underwent a sequence of six 4-minute coronary occlusion/4-minute reperfusion cycles for 3 consecutive days (days 1, 2, and 3). In the control group (group I, n=7), the recovery of systolic wall thickening after the 6 occlusion/reperfusion cycles was markedly improved on days 2 and 3 compared with day 1, indicating the development of late PC against stunning. Administration of the PTK inhibitor lavendustin-A (LD-A, 1 mg/kg IV) before the first occlusion on day 1 (group II, n=7) completely prevented the late PC effect against stunning on day 2. Late PC against stunning was also abrogated when LD-A was given before the first occlusion on day 2 (group III, n=7); however, in these rabbits, the late PC effect became apparent on day 3, indicating that LD-A itself did not have any delayed deleterious actions on myocardial stunning. In group V (n=5), the sequence of 6 occlusion/reperfusion cycles resulted in a robust increase in the activity of inducible NO synthase (iNOS [assessed as Ca2+-independent l-citrulline formation]) and nitrite+nitrate (NOx) tissue levels 24 hours later (on day 2), with no concomitant change in Ca2+-dependent NO synthase (endothelial NO synthase and/or neuronal NO synthase) activity. Similar results were obtained on day 3 (group VIII, n=6), indicating sustained upregulation of iNOS. Administration of LD-A either on day 1 (group VI, n=5) or on day 2 (group VII, n=6) abrogated the increase in iNOS activity and NOx levels on day 2. LD-A had no effect on iNOS activity or NOx levels in the absence of PC (group X, n=5). This study demonstrates that in conscious rabbits, PTK activity is necessary not only to trigger late PC against stunning on day 1 but also to mediate the protection on day 2. This investigation also provides the first direct evidence that cardiac iNOS activity is upregulated during the late phase of ischemic PC in rabbits. Furthermore, the data indicate that PTK signaling is essential for the augmentation of iNOS activity and that PTKs modulate this enzyme at two distinct levels: at an early stage on day 1 and at a late stage on day 2. This bifunctional role of PTKs in late PC has broad implications for the signaling mechanisms that underlie the response of the heart to ischemic stress and, possibly, other stresses.

This publication has 27 references indexed in Scilit: