Non-linear Kelvin–Helmholtz instability

Abstract
A non-linear analysis is presented for the stability of a liquid film adjacent to a compressible gas and under the influence of a body force directed either outward from or toward the liquid. The effects of the liquid's surface tension are taken into account. The non-linear Rayleigh–Taylor instability is included as a special case. The analysis considers the case of an inviscid liquid adjacent to a subsonic flow and the case of a very viscous liquid adjacent to a subsonic or a supersonic flow. For a subsonic external flow, it is found that the cut-off wave-number is amplitude dependent in the inviscid case whereas it is amplitude independent in the viscous case. It is found that the non-linear motion of the gas may be stabilizing or destabilizing, whereas the non-linear motion of the liquid is found to be stabilizing in the viscous case. For a supersonic external flow and a viscous liquid, the cut-off wave-number is amplitude dependent. Moreover, unstable disturbances with wave-numbers near the cut-off wave-number do not grow indefinitely with time but achieve a steady-state amplitude.

This publication has 23 references indexed in Scilit: