Abstract
1. Nerve terminal impulses (NTIs) and spontaneous or stimulus-evoked excitatory junction currents (SEJCs or EJCs), reflecting secretion of transmitter quanta from release sites in the sympathetic nerves of rat tail artery, were recorded by extracellular electrodes. 2. The release of transmitter quanta from single varicosities was analysed on a pulse-by-pulse basis. 3. Since the SEJCs were tetrodotoxin-resistant, and hence probably caused by single quanta, they were employed to analyse the quantal content of EJCs. 4. In the majority of recordings, EJCs were large compared to SEJCs from the same attachment, and preceded by prominent NTIs. This type of activity appeared to reflect simultaneous activation of several nerve fibres and numerous varicosities. 5. By focal stimulation, it was usually possible to improve the resolution by examining spots in which a large proportion of the suprathreshold stimuli failed to cause EJCs. Here, averaged NTIs preceding large EJCs were indistinguishable from averaged NTIs not followed by EJCs. Thus, failure of invasion by the nerve impulse was not a cause of the frequent secretory failure. 6. In these attachments the amplitude distribution of nerve stimulus-evoked EJCs was similar to that of the SEJCs and many individual EJCs could be matched. in amplitude and time course by SEJCs. Thus, transmitter secretion from these sympathetic nerve varicosities seems to be basically monoquantal. 7. Under conditions when all EJCs were smaller than or equal to the largest SEJCs some characteristic EJC profiles appeared only a few times in response to several hundred suprathreshold stimuli at low frequency (0.5-1 Hz). Using tentatively these EJCs as ''fingerprints'' of single quanta from particular release sites, the probability for activation of individual release sites ranges from 0.002 to 0.02.

This publication has 22 references indexed in Scilit: