Abstract
1. The method of sedimentation equilibrium in a gradient of caesium chloride has been applied to the preparation of blood-group-specific glycoproteins from human ovarian-cyst fluids: it is shown that virtually complete separation from contaminating protein is easily accomplished in a single step. 2. The glycoproteins isolated in this way have been characterized by analytical density-gradient experiments in both caesium chloride and caesium sulphate and values of the buoyant density, selective solvation and apparent molecular weight have been obtained. 3. In some cases, materials prepared from the same cysts by solvent extraction methods have also been characterized in these terms. 4. The selective solvation values are about 0.1 and 0.5g of water/g of glycoprotein in caesium chloride and caesium sulphate respectively. 5. The apparent molecular-weight values are much lower than the weight-average molecular weights, and it is shown that the origin of the discrepancy is heterogeneity in density of the glycoproteins. 6. Some sources of error in the interpretation of density-gradient schlieren patterns are examined.