Abstract
A study has been made of the electrical conductivity and thermoelectric power of liquid alloys Te1-x Se x with 0≤-x≤-0.5. The temperature range extends from undercooling to about 900°C for electrical conductivity and 750°C for thermoelectric power. A partial conservation after melting of covalent bonds between the atoms of the chains leads to a liquid model in which Gubanov's theory predicts an energy band gap. The experimental results in the intrinsic semiconductor range give the band gap and the mobility ratio values. The thermal gap changes from 1.2 to 3 ev between pure tellurium and the alloy with 70 at. % selenium. There is a large increase in hole mobility with atomic % selenium. For x≥0.2 the low temperature results of the electrical conductivity can be explained by the existence of localized states in the band gap. The high temperature measurements show a trend to the metallic state, but this state cannot be reached at one atmosphere pressure even for tellurium.

This publication has 12 references indexed in Scilit: