Functional groups at the catalytic site of F1 adenosine triphosphatase

Abstract
The protection of F1 ATPase by inorganic phosphate, ADP, ATP, and magnesium ion against inactivation by 1-fluoro-2,4-dinitrobenzene, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, and 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline, respectively, has been investigated. Dissociation equilibrium constants and rate constants for the labeling reactions have been deduced from a quantitative treatment of the kinetic data. Comparison of these dissociation constants with each other and with the corresponding literature values indicates that the essential Tyr, Arg, Lys, and Glu or Asp residues are indeed located at the catalytic site of the enzyme. Examination of the rate constants for the labeling reactions in the presence of excess inorganic phosphate, ADP, ATP, or magnesium ion, respectively, suggests that the essential phenol and amino groups are located nearer to the bound inorganic phosphate or the gamma-phosphate group than to the alpha- or beta-phosphate group of the bound ATP, that the essential guanidinium group is located nearer to the alpha- or beta-phosphate group than to the gamma-phosphate group of the bound ATP or the bound inorganic phosphate, and that the essential carboxylate group is located slightly farther away but complexed with magnesium ion which it shares with the bound inorganic phosphate. A mechanism consistent with these topographical relationships is proposed for the catalytic hydrolysis and synthesis of ATP.