Tryptophan 49 of antithrombin, the primary inhibitor of blood clotting proteinases, has previously been implicated in binding the allosteric activator, heparin, by chemical modification and mutagenesis studies. However, the X-ray cocrystal structure of the antithrombin-pentasaccharide complex shows that Trp49 does not contact the bound saccharide. Here, we provide a detailed thermodynamic and kinetic characterization of heparin binding to a Trp49 to Lys variant of antithrombin and suggest a model for how Trp49 participates in heparin binding and activation. Mutation of Trp49 to Lys resulted in substantial losses of 16-24% in heparin-binding energy at pH 7.4, I 0.15, and 25 degrees C. These losses were due to both the loss of one ionic interaction ( approximately 30%) and the loss of nonionic interactions ( approximately 70%). Rapid kinetics analyses showed that the mutation minimally affected the initial weak binding of heparin to antithrombin or the rate constant for the subsequent conformational activation of the serpin. Rather, the principal effect of the mutation was to increase the rate constant for reversal of the conformational activation step by 70-100-fold, thereby destabilizing the activated conformation. This destabilization could be accounted for by the disruption of a network of interactions involving Trp49, Glu50, and Lys53 of helix A and Ser112 of helix P, which stabilizes the activated conformation.