Abstract
A horizontal fluid layer whose lower surface temperature is made to vary with time is considered. The stability analysis for this situation shows that the criterion for the onset of instability in a fluid layer which is being heated from below, depends on both the method and the rate of heating. For a fluid layer with two rigid boundaries, the minimum Rayleigh number corresponding to the onset of instability is found to be 1340. For slower heating rates the critical Rayleigh number increases to a maximum value of 1707·8, while for faster heating rates the critical Rayleigh number increases without limit. Two specific types of heating are investigated in detail, constant flux heating and linearly varying surface temperature. These cases correspond closely to situations for which published data exist. The results are in good qualitative agreement.