Investigation of the existence and biological role of l‐arginine/nitric oxide pathway in human platelets by spin‐trapping/EPR studies
- 1 December 1991
- journal article
- Published by Wiley in European Journal of Biochemistry
- Vol. 202 (3), 923-930
- https://doi.org/10.1111/j.1432-1033.1991.tb16452.x
Abstract
The aim of the present study was to apply spin trapping/EPR spectroscopy to investigate the existence and biological role of the L-arginine/nitric oxide pathway in human platelet aggregation. Three different spin traps were used: two nitroso, 3,5-dibromo-4-nitrosobenzenesulfonate (DBNBS) and 2-methyl-2-nitrosopropane (MNP), and a nitrone, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The effect of spin-trap concentration on the collagen-induced human platelet aggregation was compared to the anti-aggregatory effect caused by L-arginine. The results show that the nitroso spin traps (DBNBS and MNP) are more effective than L-arginine in preventing platelet aggregation. DMPO has virtually no effect on the collagen-induced aggregation except at a high concentration (300 mM). Furthermore, activation of platelets with a low concentration of collagen (17 micrograms/ml) and in the presence of DBNBS or MNP yields several EPR-detectable spin adducts. Some of the observed spin adducts do not correspond to those originating from the interaction of a free radical, nitric oxide (NO.) gas, with the spin traps [Arroyo, C.M. & Kohno, M. (1991) Free Radical Res. Commun. 14, 145-155]. Only one adduct of DBNBS, with a relative intensity of 0.1, observed in the washed-platelet experiment and in the presence of superoxide dismutase, is similar to the EPR spectrum obtained following a reaction of pure NO. gas with DBNBS. This suggests that the EPR spectrum of the DBNBS adduct consisting of a triplet may originate from the production of NO. by these cells. Additional DBNBS and MNP spin adducts were generated during platelet activation in the presence of Ca2+ and of a cytosol-depleted L-arginine preparation from washed platelets to which L-arginine was subsequently added. The formation of these DBNBS and MNP spin adducts were inhibited by N omega-methyl-L-arginine (MeArg, 100 microM), suggesting that these originated from a product of NO synthase. Furthermore, the formation of DBNBS and MNP spin adducts in platelet suspensions was enhanced by the presence of superoxide dismutase; however, their formation was prevented by the endothelial-derived relaxing factor (EDRF) inhibitors methylene blue and hemoglobin. The results from the MeArg and EDRF inhibitor experiments support the existence of the L-arginine/NO pathway in platelets. In addition, the prevention of spin-adduct formation by EDRF inhibitors, suggests that the mechanisms of EDRF formation and the L-arginine/NO pathway in endothelial cells and platelets are similar.(ABSTRACT TRUNCATED AT 400 WORDS)Keywords
This publication has 32 references indexed in Scilit:
- Receptor-mediated generation of an EDRF-like intermediate in a neuronal cell line detected by spin trapping techniquesBiochemical and Biophysical Research Communications, 1990
- Biosynthesis and Metabolism of Endothelium-Derived Nitric OxideAnnual Review of Pharmacology and Toxicology, 1990
- Nitric oxide: A cytotoxic activated macrophage effector moleculeBiochemical and Biophysical Research Communications, 1988
- Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediateBiochemistry, 1988
- Vascular endothelial cells synthesize nitric oxide from L-arginineNature, 1988
- The influence of amines on various platelet responsesBiochimica et Biophysica Acta (BBA) - Biomembranes, 1983
- Guanylate cyclase activation by nitroprusside and nitrosoguanidine is related to formation of S-nitrosothiol intermediatesBiochemical and Biophysical Research Communications, 1980
- Possible involvement of S‐nitrosothiols in the activation of guanylate cyclase by nitroso compoundsFEBS Letters, 1980
- Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxideBiochemical and Biophysical Research Communications, 1978
- Spin trappingAccounts of Chemical Research, 1971