Geometries and materials for subwavelength surface plasmon modes

Abstract
Plasmonic waveguides can guide light along metal–dielectric interfaces with propagating wave vectors of greater magnitude than are available in free space and hence with propagating wavelengths shorter than those in vacuum. This is a necessary, rather than sufficient, condition for subwavelength confinement of the optical mode. By use of the reflection pole method, the two-dimensional modal solutions for single planar waveguides as well as adjacent waveguide systems are solved. We demonstrate that, to achieve subwavelength pitches, a metal–insulator–metal geometry is required with higher confinement factors and smaller spatial extent than conventional insulator–metal–insulator structures. The resulting trade-off between propagation and confinement for surface plasmons is discussed, and optimization by materials selection is described.