Abstract
Recent studies on hormone-mediated maternal effects in birds have highlighted the influence of variable maternal yolk androgen concentration on offspring phenotype, particularly in terms of early development. If genetic differences between laying females regulate variation in yolk hormone concentration, then this physiological maternal effect is an indirect genetic effect which can provide a basis for the co-evolution of maternal and offspring phenotypes. Thus, we investigated the evolutionary associations between maternally derived yolk testosterone (T) and early developmental traits in passerine birds via a comparative, phylogenetic analysis. Our results from species-correlation and independent contrasts analyses provide convergent evidence for the correlated evolution of maternal yolk T concentration and length of the prenatal developmental period in passerines. Here, we show these traits are significantly negatively associated (species-correlation:pr2=0.85; independent contrasts:p=0.005). Our results highlight the need for more studies investigating the role of yolk hormones in evolutionary processes concerning maternal effects.