Protein-Tyrosine Kinase Activity in Saccharomyces cerevisiae

Abstract
Saccharomyces cerevisiae was examined for tyrosine kinase activity in vitro because this organism offers molecular and genetic approaches for analyzing the role of tyrosine phosphorylation in cellular growth control that are unavailable in higher eukaryotes. Yeast extracts phosphorylated a random copolymer (glutamic acid:tyrosine, 80:20) at tyrosine in a reaction that was linear with respect to time and protein concentration. In the absence of added copolymer, phosphotyrosine was 0.1 percent of the total phosphoamino acids labeled with [gamma-32P]adenosine triphosphate in endogenous yeast proteins. However, specific activities of these reactions were low (approximately 1 percent of those in extracts of chick embryo fibroblasts). Lack of significant incorporation of label from [alpha-32P]adenosine triphosphate into the copolymer or endogenous yeast proteins demonstrated that nucleotide interconversion, adenylylation, and subsequent hydrolysis could not account for the generation of phosphotyrosine observed.