The influence of atmospheric waves on the general circulation of the middle atmosphere

Abstract
To a first approximation, the basic features of the globally averaged structure of the middle atmosphere (such as the warm stratopause and cold mesopause) can be understood on radiative grounds alone. However, dynamical processes must be invoked if the observed latitudinally varying structures of the zonal-mean temperature and wind fields are to be explained. Particularly large departures from a hypothetical radiatively determined state occur in the winter stratosphere (especially in the Northern Hemisphere) and in the upper mesosphere at the solstices. Simple theoretical models indicate that the primary dynamical mechanisms that drive the middle atmosphere away from radiative balance are wave motions, notably large-scale planetary waves and small-scale gravity waves. Much current research is being devoted to understanding the complex transient and irreversible processes by which such waves can influence the zonal-mean state and also lead to the meridional transport of chemical species.

This publication has 1 reference indexed in Scilit: