Rapid-scanning cryospectroscopy of cobalt(II)-substituted carboxypeptidase A serves to identify and characterize ternary enzyme-substrate-inhibitor (IES) complexes formed by the interaction between the enzyme, a peptide substrate, and a noncompetitive inhibitor. A cobalt absorption spectrum distinct from any induced by peptide or inhibitor alone signals formation of the IES complex. Tight-binding noncompetitive inhibitors containing an aromatic ring, e.g., .beta.-phenylpropionate, cause the IES complex to form much more slowly than simple binary complexes of the enzyme with either peptide or inhibitor. An inhibitor such as acetate, which binds more weakly and is less bulky, permits the IES complex to form relatively quickly. Remarkably, the cobalt spectra of the IES complexes match those previously found for the steady-state ester (depsipeptide) intermediates. Chemical quenching studies have demonstrated that in these ester intermediates the scissile bond is broken [Galdes, A., Auld, D. S., and Vallee, B. L. (1986) Biochemistry 25, 646-651]. This finding, in conjunction with the present studies, implies that a peptide and a noncompetitive inhibitor of its hydrolysis occupy the same binding loci as the hydrolytic products of a depsipeptide and further indicates that breakdown of an enzyme-biproduct complex is rate-determining for the turnover of depsipeptides.